Advances in Preparative Chemistry of Oxides and Fluorides

RUDOLF HOPPE

Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität-Giessen, D 63 L.-Giessen, Heinrich-Buff-Ring 58, Germany

Received May 30, 1978

A new attempt is made to interpret chemical formulas in the sense of solid state chemistry. Chemical formulas do not reveal the coordination behavior of all particles; therefore, a modified method a la P. Niggli is given to express these terms by formulating "Motifs of Coordination." Furthermore unexpected new results in inorganic solid state chemistry (oxides and fluorides of metals, e.g., $Rb_8[Zn_4O_8]$, $BaNiF_6$) have been achieved by using new starting materials and new preparative techniques. Numerous examples are given in detail.

The term *advances* can be interpreted in different ways. Here it is restricted mainly to the synthesis of previously unknown compounds. From the abundance of possible examples, those which have been examined by the author's group were chosen. In addition, these as well as other examples cited here illustrate our present view of solid state chemistry and our "philosophy in behind."

I. On the Chemical Language of Formulas

In general, chemical formulas are written following more or less strict conventions, e.g., NaCl or H₂SO₄, thus provoking one to think conventionally about even unknown compounds, e.g., AuF. To foster new ideas, basically, this needs to be altered (with the exception of textbooks, etc.): The chemical composition of a given compound—known or yet unknown—governs and restricts structural features much more than many chemists may imagine. Whereas in oxides such as Li₂PbO₃ (1) or BaPbO₃ (2), Pb^{IV} shows coordination number (CN) 6, this is not possible in, e.g., Cs₂PbO₃ (3): Cs⁺ is too large to enter octahedral holes of a closest packing of O^{2-} -like Li⁺; and the ratio Cs:Pb = 2 is too large to allow the formation of a framework PbO_{6/3} as in perovskites, e.g., BaPbO₃. For both reasons, a layer lattice of Pb⁴⁺ with CN 6 is excluded. Therefore the structural principle according to [PbO_{4/2}O_{1/1}] with CN 5 governs a wide range of compounds, from Cs₂PbO₃ and Cs₂PrO₃ (4) to K₂TiO₃ (5) and Cs₂TiS₃ (6). Using Niggli's system of writing chemical formulas of simple compounds (7) such as SiO₂ = SiO_{4/2} in an extended manner, one can often foresee whether unusual CNs are to be expected:

"NiO," which perhaps has not previously been obtained as a "pure" material, adopts the NaCl type of structure. Consequently we write, following Niggli, NiO_{6/6} as well as and this is a characteristic feature of our variation of Niggli's idea—OTNi_{6/6}. Thus Li_2NiO_2 (9), written as $LiO_{4/4}(Ni_{1/2})$ or as $OLi_{4/4}(Ni_{1/2})$, immediately leads to the *motif* of coordination O:Li_{4/4}Ni_{2/4}, and thence to the corresponding Ni:O_{4/2}, which easily explains why the motif of the PdCl₂ type of

0022-4596/79/010099-05\$02.00/0 Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved Printed in Great Britain structure governs the [NiO₂] part of Li₂NiO₂. Consequently, we predicted that (then unknown) K₂NiO₂, once obtained, should structurally follow the motif of coordination $O:K_{5/5}(Ni_{1/2})$, owing to the replacement of Li⁺ by the much larger K⁺, with K:O_{5/5} (Ni_{1/2}). Here, if the CN of O²⁻, as in Li₂NiO₂ and NiO, is 6 the motif Ni:O_{2/1}(K₂) is implied. And indeed, K₂NiO₂, after it was prepared with great difficulty (9), turned out to be a "stuffed derivative" of the XeF₂ type of structure (10, 11) with "isolated" linear groups O-Ni-O characterized by unusually short distances Ni-O.

This system of writing chemical formulas in all possible ways, e.g., $[PtCl_6]K_2 =$ $KCl(Pt_{1/2}) = KCl_{12/4}(Pt_{1/2}) = ClPt_{1/6}K_{4/12}$, leads us to use motifs of coordination, connection, and surrounding, as well as graphs of adjunctions, as a guide and tool for predicting unusual CN's and for describing even complex structures in greater detail than before (12).

II. Use of New Starting Materials

Whereas oxides such as $NaLnO_2(13)$ and $KLnO_2(14)$ are more or less easily prepared (Ln = La to Lu), oxides $RbLnO_2$ were obtained at that time with Ln = Dy to Lu only (15). All experiments in preparing analogous compounds such as $CsNdO_2$ failed (16). This striking discrepancy was later solved (18) by using freshly prepared, immensely active samples of $Nd_2O_3^*$. These were obtained by careful dehydration of $Nd(NO_3)_3 \cdot 6H_2O$ in vacuo in two steps, the first leading to $Nd(NO_3)_3$ (free of water), and the second, by thermal decomposition, to Nd₂O₃ at less than 300°C. Thus the formation of NdOOH (a compound which requires higher temperatures to yield inactive samples of Nd_2O_3) was avoided.

Preparing single crystals of ternary oxides with Pb^{2+} -like K₂Pb₂O₃ (which, contrary to the literature (18), shows an eight fold but still cubic unit cell), we used underoxidized oxides such as KO_{0,45} (instead of KO_{0,5}) to

getter the last traces of O_2 (which are always present). After intensive studies of K₄PbO₃ (19) with ClO₃-like PbO₃ groups, $K_2Pb_2O_3$ and $Rb_2Pb_2O_3$ (20), which are perovskites (KPbO_{3/2}) with one-half of O^{2-} absent, as well as $K_2[Pb_2O_4]$ (20), we repeated experiments started in 1958 to prepare Oxostannates(II) such as K₂SnO₂ and $K_2Sn_2O_3$. Oxostannates(II) have never definitely been prepared before, because of disproportionation of Sn^{II} to Sn^{IV} and metallic Sn. Now using KO_{0.45} we obtained single crystals of light yellow K₂SnO₂ and deep yellow $K_2Sn_2O_3$ (21) at the first onset. Obviously the disproportionation observed before was induced by the formation of, e.g., K₂SnO₃ formed with traces of O₂ which were not gettered (using K_2O and SnO_2).

III. New Techniques

A serious complication in the synthesis of solid state compounds is the "reaction with the wall." We have used this implication systematically to synthesize new oxides such as K_2NiO_2 , mentioned earlier, as well as others, e.g., Na_4FeO_3 (22), the first oxoferrate(II). Surprisingly there are CO₃-like planar groups [FeO₃].

Originally we were not able to handle the beautiful colorless transparent single crystals of the Oxoplumbates(II) mentioned above. Because of the layer structure even a gentle touch with a tiny needle of glass leads to multiple splitting, producing many new, much thinner plates of crystals. Last, different electric charges of crystal and the glass needle (produced by intensive friction) enabled us to lift and to transport the mechanically, extremely sensitive, single crystals easily (after several attempts).

Following the ideas of Juza *et al.* (23), we constructed new autoclaves with which one may regularly use flourine (up to 3000 atm, and $t = 550^{\circ}$ C) or oxygen (up to 5000 atm and 800°C) to prepare new fluorides or oxides. A long and fruitless search for

BaNiF₆, begun in 1951 (25), was quickly solved. By high-pressure fluorination, we obtained carminered BaNiF₆, which surprisingly showed a new monoclinic form instead of the BaGeF₆-like form we expected. But annealing under pressure (40 000 atm) yielded the expected form immediately. Carminered SrNiF₆ was also obtained, but directly in the expected BaGeF₆ form. New intermediates such as CsRb[NiF₆] or RbK[NiF₆] were prepared in the same way (25). Similarly, Müller (26) obtained single crystals of MnF₄, O_2^+ [MnF₅], and O_2^+ [TiF₅], and O_2^+ [AuF₆] (27); and Jansen, crystals of As_2O_5 (28, 29) and Sb_2O_5 (30) for the first time.

Less dramatic conditions are used in the difficult preparation of pure samples of simple compounds such as K_2S , Cs_2S , and Rb_2Se . The well-known synthesis in liquid ammonia yields samples which always show distinct indications of partial ammonolysis. We let the elements react directly in the gas phase in a closed system (31). Starting with these very pure chalcogenides we obtained compounds such as $K_6[HgS_4]$, etc. (32), which had previously been unknown.

The synthesis of well-known compounds such as KOH in the form of samples definitely free of CO_2 and/or H_2O is extremely difficult. We obtained CsOH for the first time, pure and in the form of single crystals, by reacting Cs_2O_2 with H_2 , and we proved the purity of our samples by also preparing CsOH from Cs_2O_2 , trapped in closed cylinders of Ag, by letting H_2 diffuse through the wall (33).

IV. Some Unexpected Results

I have never been convinced that our early work on Nd^{IV} and Dy^{IV} (34), although confirmed (35) by others, was free of doubt. Now, using high-pressure fluorination, we have finally obtained bright orange fluorescent samples of Cs₂RbNdF₇ and Cs₂RbDyF₇, which according to powder data are members of the $(NH_4)_3 ZrF_7$ type of structure. BaPrF₆, isotypic with RbPaF₆ (36), and SrPrF₆, LaF₃ type, both colorless, have been obtained for the first time (37).

Surprisingly a reinvestigation of the system Na₂O/NaFeO₂ yielded striking results. We found Na₅[FeO₄] (38) and Na₈[Fe₂O₇] (39) with isolated groups, Na₁₄Fe₆O₁₆ (40) with silicate-like double chains (Zweier-Einfach-Doppelkette; Liebau (41), Na₄[Fe₂O₅] (42) with a layer structure similar to that of Na₄[Si₂O₅] (43), and (always twinned single crystals of) Na₃FeO₃ (45) with a structure still unknown. In all cases Fe³⁺ shows CN 4, which is reminiscent of our cobaltates such as Cs₂[CoO₃] (45) or Li₈[CoO₄]O₂ (46).

In striking contrast to the unexpected similarity between $K_6[Fe_2O_6]$ (47) and $K_6[Mn_2O_6]$ (48), both of which show Al₂Cl₆like groups [M₂O₆] the expected Jahn-Teller distortion is observed in Na₄Mn₂O₅ (49), which is the first definite example of such NaCl-like oxides with vacancies within the anion part of the lattice. Here Mn³⁺ as well as Na⁺ has tetragonal-pyramidal coordination; Mn³⁺, Jahn-Teller distortion.

We do not know why CsNbO₃ (50) $(=Cs_4[Nb_4O_{12}])$ shows tetrametric units with CN 5 for Nb⁵⁺ but is, instead, a variant of KIrO₃ (51) with CN 6. Newly obtained RbTaO₃ (52), which, in striking contrast to the literature (53), proved never to have been prepared before in a definite state, is characterized by a complicated layer structure, one-half of Ta having CN 5, and the other CN 6.

There is a close resemblance among new oxogallates such as $Na_5[GaO_4]$ (54), $Na_8[Ga_2O_7]$ (55) and $Na_{14}[Ga_6O_{14}]$ (56). This holds even for Na_5NiO_4 (57), the first Oxoniccolate(III), which in striking contrast to the known examples $LiNiO_2$ (58) and $NaNiO_2$ (58) with CN 6, shows tetrahedral "isolated" groups [NiO₄].

Last, $Rb_8[Zn_4O_8]$ (59) and $K_2[Zn_6O_7]$ (60) are the first examples of oxozincates with Zn^{2+} having CN 3.

I would like to conclude with the case of the new fluoride $SrRhF_5$ (61). The poor quality of the single crystals obtained by annealing forced us to look for possible isotypes. We found $BaGaF_5$ (62), which was believed to be $Ba_3Ga_5F_{21}$ (63), and elucidated the crystal structure. This is a new, hitherto unknown, type for fluorides $M^{II}M^{III}F_5$. Previously formulated (64) $Ba_3Cr_5F_{21}$ is another representative of the new structure, $BaCrF_5$.

Acknowledgments

The investigations referred to were possible only with the cooperation of numerous co-workers, who can be cited here only partially. I wish to thank all of those who with great aptitude, enthusiasm, and endurance in repeating laborious experiments worked with me.

References

- CH. HEBECKER, R. HOPPE, AND G. KREUZ-BURG, Z. Anorg. Allg. Chem. 375, 270 (1970).
- R. HOPPE AND K. BLINNE, Z. Anorg. Allg. Chem. 293, 135 (1958).
- 3. P. PANEK AND R. HOPPE, Z. Anorg. Allg. Chem. 393, 13 (1972).
- H. BRUNN AND R. HOPPE, Z. Anorg. Allg. Chem. 433, 189 (1977).
- 5. W. SCHARTAU AND R. HOPPE, Z. Anorg. Allg. Chem. 408, 60 (1974).
- 6. H. D. RAD AND R. HOPPE, see Diss. Rad. Giessen, 1978.
- 7. P. NIGGLI, "Grundlagen der Stereochemie," Basel (1945).
- H. RIECK AND R. HOPPE, Z. Anorg. Allg. Chem. 392, 193 (1972).
- H. RIECK AND R. HOPPE, Z. Anorg. Allg. Chem. 400, 311 (1973).
- R. HOPPE, W. DÄHNE, H. MATTAUCH, AND K. M. RÖDDER, Z. Anorg. Allg. Chem. 324, 214 (1964).
- H. A. LEVI AND P. A. AGRON, J. Amer. Chem. Soc. 85, 241 (1963).
- 12: R. HOPPE, unpublished; see, e.g. (38) or (60).
- 13. G. BLASSE, J. Inorg. Nucl. Chem. 28, 2444 (1966).
- 14. R. CLOS, M. DEVALETTE, P. HAGENMÜLLER, R. HOPPE, AND E. PALETTA, C.R. H. Acad. Sci., Ser. C 265, 801 (1967).

- 15. K. SEEGER AND R. HOPPE, Z. Anorg. Allg. Chem. 365, 22 (1969).
- 16. R. HOPPE et al., unpublished, 1965.
- H. BRUNN AND R. HOPPE, Z. Anorg. Allg. Chem.
 417, 213 (1975); H. BRUNN AND R. HOPPE, Rev. Chim. miner. 13, 41 (1976).
- 18. C. FOUASSIER AND P. HAGENMÜLLER, Bull. Soc. Chim. France 4, 1338 (1968).
- K.-P. MARTENS AND R. HOPPE, Z. Anorg. Allg. Chem., 438, 105 (1978).
- K.-P. MARTENS AND R. HOPPE, Z. Anorg. Allg. Chem., 437, 116 (1977).
- 21. R. BRAUN AND R. HOPPE, Diss. Braun, Giessen, Angew. Chem. Int. Ed. 17, 449 (1978).
- R. HOPPE AND H. RIECK, Z. Anorg. Allg. Chem., 437, 95 (1977).
- R. JUZA, H. JAKOBS, AND H. GERKE, Ber. Bunsenges. Phys. Chem. 70, (9/10), 1103 (1966).
- 24. R. HOPPE, Dissertation Münster/Westf., 1954.
- R. HOPPE AND T. FLEISCHER, J. Fluorine Chem., in press.
- 26. B. MÜLLER, 6th European Symposium on Fluorine Chemistry, Dortmund, 1977.
- 27. N. BARTLETT AND K. LEARY, *Rev. Chim. miner* 13, 82 (1976).
- M. JANSEN, Angew. Chem. 89, 326 (1977); M. JANSEN, Angew, Chem. Int. Ed. 16, 314 (1977).
- 29. M. JANSEN, Z. Anorg. Allg. Chem., 441, 5 (1978).
- 30. M. JANSEN, Acta Crystallogr., in press.
- 31. H. SOMMER AND R. HOPPE, Z. Anorg. Allg. Chem. 429, 118 (1977).
- 32. H. SOMMER AND R. HOPPE, Z. Anorg. Allg. Chem., 443, 201 (1978).
- H. SOMMER AND R. HOPPE, Diss. Sommer, Giessen, 1976.
- 34. R. HOPPE, Intern. Union Pure Appl. Chem. Congr., München, 1959.
- 35. L. B. ASPREY, Intern. Union Pure Appl. Chem. Congr., München, 1959.
- 36. J. H. BURNS, H. A. LEVY, AND O. L. KELLER, JR., Acta Crystallogr. B 24, 1675 (1968); B. MEL-HORN AND R. HOPPE, Z. Anorg. Allg. Chem. 425, 180 (1976).
- K. FELDNER AND R. HOPPE, Diss. Feldner, Giessen, 1978.
- 38. G. BRACHTEL AND R. HOPPE, Naturwissenschaften 62, 138 (1975).
- 39. G. BRACHTEL AND R. HOPPE, Z. Anorg. Allg. Chem., in press.
- 40. G. BRACHTEL AND R. HOPPE, Angew. Chem. 16, 43 (1977).
- F. LIEBAU, "Handbook of Geochemistry," Vol. II/3, Chap. 14, Springer-Verlag, Berlin/New York/Heidelberg.
- 42. G. BRACHTEL AND R. HOPPE, Naturwissenschaften 64, 271 (1977).
- 43. A. K. PANT, Acta Crystallogr. B 24, 1077 (1968).

- 44. G. BRACHTEL AND R. HOPPE, Diss. Brachtel, Giessen, 1978.
- M. JANSEN AND R. HOPPE, Z. Anorg. Allg. Chem. 408, 75 (1974).
- 46. M. JANSEN AND R. HOPPE, Z. Anorg. Allg. Chem. 398, 54 (1973).
- H. RIECK AND R. HOPPE, Z. Anorg. Allg. Chem. 408, 151 (1974).
- 48. G. BRACHTEL AND R. HOPPE, Naturwissenschaften 64, 272 (1977).
- 49. G. BRACHTEL AND R. HOPPE, Naturwissenschaften 64, 272 (1977).
- 50. G. MEYER, R. HOPPE, AND M. JANSEN, Naturwissenschaften 63, 386 (1976).
- 51. K. CLAES AND R. HOPPE, J. Less. Common. Metals 43, 129 (1975).
- 52. M. SERAFIN AND R. HOPPE, Diss. Serafin, Giessen, 1978.
- 53. G. A. SMOLENSKII AND N. V. KOZEONIKOVA, Dokl. Akad. Nauk. SSSR (2), 76, 519 (1958).
- 54. D. FINK AND R. HOPPE, Z. Anorg. Allg. Chem. 414, 193 (1975).

- 55. D. FINK AND R. HOPPE, Z. Anorg. Allg. Chem. 422, 1 (1976).
- 56. F. GRIESFELLER AND R. HOPPE, Z. Anorg. Allg. Chem., in press.
- 57. H. ZENTGRAF AND R. HOPPE, Naturwissenschaften, 65, 154 (1978).
- 58. L. B. DYER, B. S. BORIE, AND G. P. SMITH, J. Amer. Chem. Soc. 76, 1499 (1954).
- 59. R. WAMBACH AND R. HOPPE, Angew. Chem. 89, 498 (1977).
- 60. R. WAMBACH AND R. HOPPE, Z. Anorg. Allg. Chem., in press.
- 61. R. DOMESLE, 6th European Symposium on Fluorine Chemistry, Dortmund, 1977.
- 62. R. DOMESLE AND R. HOPPE, *Rev. Chim. miner.*, in press.
- 63. J. RAVEZ, J. GRANNEC, J. PORTIER, AND P. HAGENMÜLLER, *Bull. Soc. Chim.* (1), 64 (1970).
- 64. D. DUMORA AND J. RAVEZ, C.R. Acad. Sci. Paris, Ser. C 268, 1246 (1968).